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“” Based on a data matrix X = (Xl" .,Xk): pxk with independent columns
Xi~'Np(£i,Z), and an independent Wishart matrix S: po~'Wp(n,Z), testimators dom-
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inating the best equivariant estimators of F and |t| are obtained under two types
of entropy loss. For simultaneous estimation of the mean vector and the variance
covariance matrix of a multinormal population, a suitable entropy loss is developed
and testimators dominating the pair consisting of the sample mean vector and the
best multiple of the sample Wishart matrix are derived, A technique of SINHA

(Jour. Mult, Analysis, 1976)nis heavily exploited.
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INADMISSIBILITY OF THE BEST EQUIVARIANT
ESTIMATORS OF THE VARIANCE-COVARIANCE
MATRIX AND THE GENERALIZED VARIANCE UNDER ENTROPY LOSS

by

Bimal K. Sinha1 and Malay Ghosh2

University of Pittsburghand University of Florida

1. INTRODUCTION. Suppose Yl,...,Yn are iid N(E,oz). If £ is known, then the best

scale invariant estimator of 02 is given by

-lcn 2
0o(¥ysee e, Y )= (@42) ], (Y - )7, (1.1)

It is proved in Girshick and Savage (1951), and Hodges and Lehmann (1951) that ¢0
is an admissible estimator of 02 under squared error loss. However, if £ is unknowm,

then Stein (1964) has shown that the natural estimator

-1 5,2
HCATIPN SERC i ¢ A h (1.2)

of 02(?= n-122=1Yi) is inadmissible under squared error loss, and is dominated by

estimators of the form
-len =.2 -len 2
$(¥y e e Y ) = min{(n+D) Ly (Y, <), (nb2) YL (Y =600 ) (1.3)

for every fixed constant 50. The estimator ¢ of 02 can be viewed as a preliminary
test estimator (testimator) which uses the estimator (n+l)-lz:=l(Yi-§)2 for 02

= 2 -len =.2 . re ,
if the F-statistic n(Y- 50) /{(n=-1) zi=l(Yi-Y) } for testing HO. £ EO against

the alternatives le £ # £, exceeds (n-1)/(n+l) (thereby rejecting H_  at a certain

0
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significance level), and uses the estimator (n+2)-lZ:=l(Yi-€o)2 otherwise. Stein

(1964) considered the more general regression analog of this problem in the canonical
set up. Brewster and Zidek (1974) have shown that the results extend to a more

general loss including the entropy loss (first introduced in James and Stein (1961))

given by
L(a,0%) = a/c® ~ log(a/c?) - 1, (1.4

to which attention will be restricted in this paper.

There are two possible multivariate extensions of the above results. One can
consider estimation of the variance-covariance matrix? or the generalized variance
|§| in a multinormal set up. To fix ideas, let ?1""’¥m be iid N(E,g), where each

Yi is pxl. When both £ and I are unknown, the minimal sufficient statistic for these

1/22 m s s \I/g -1lrm
paraneters is (1,5), where X = ' T, and § = 0, (1T (1,2 @ =a T 1.

Haff (1979b, 1980, 1982) and Dey and Srinivasan (1985) have considered estimation

of I under several losses including the entropy loss
~ ~ -1 -~ -1
L,(2,0) = tr(2l 7) - log[zz |- p. (1.5)

They propose estimators I of I which are functions of the Wishart matrix S alone,

~ ~ ~

but do not consider any Stein-~type estimators (i.e. testimators).

In this note, we consider estimation of I and Z-l each under the entropy losses

~

L1 and

L,(I,5) = :r(gg’l) - log|zz ™} - p. (1.6)

To our knowledge, the loss (1l.6) has never been considered before either for

1

estimating Z or ™. Haff (1977, 1979a, 1979b) considers estimation of Z-l under

various quadratic losses. For us, the loss (1.6) seems to be as natural as (1.5),

and can be motivated as follows. Suppose S is a random variable having a p-

dimensional Wishart distribution with degrees of freedom n and parameter I(to be
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denoted by Wp(n,z)). Write f;(s) as the pdf of S. Then, a meaningful loss in es-
I timating I by A (or 2-1 by Afl) is the entropy distance between Wp(n,Z) and Wp(n,A),

and is given by
. £:(S)
I Ez[log ?izgyl = (n/2)L2(§,§). (1.7)

-~

-~

Use of an estimator I in place of A gives rise to (1.6).

In Section 2 of this note, we consider estimation of I and Z-l each under the

-~ -~

losses (1.5) and (1.6), and develop Stein-type testimators dominating the best
multiples of the Wishart matrix and its inverse, A technique of Sinha (1976) is
heavily exploited. Incidentally, it may be remarked that for the loss (1.6) no
Haff-type improved estimator over the best equivariant estimator is readily available.
We also consider simultaneous estimation of the mean vector and the variance-

covariance matrix, and develop certain estimators dominating the pair consisting

of the sample mean vector and the best multiple of the Wishart matrix under a
suitable entropy loss to be developed in Section 2.
. In Section 3, we consider estimation of [ZI. This problem has received attention
in Shorrock and Zidek (1976), and Sinha (1976). In these papers Stein-type testima-
tors are developed, and are shown to dominate the best multiple of ISI under squared
error loss. Similar testimators are developed in Section 3, and are shown to dominate

the best multiple of ISI under the two entropy losses

L (zl, 2D = fzi/]z] - togclzl/lzh - 1 (1.8)
and

Ly(lzl,zD) = Jzl/]E] - 1os(lzl/IZD - 1. (1.9)

Throughout this paper, for two matrices A and B of the same order, A> B implies

that A- B is nonnegative definite. In the remainder of this section, we state with-

LTI AL I I VR Y . e T N e R S A _'-_'-.'-"-_'._'."\_-,r..'..'.._\ S T P S T M J B ~
A tala"s"a®aa "\-'. 2’ R IR SPRAPIRPVAERE PN VPR PR LY. W L--_.-..A-‘.-A_'L‘L.L‘.L’l{-q’JL--_-l Y A'-‘_‘.




out proof three matrix lemmas which are used repeatedly in Section 2. The proofs

of these lemmas are quite straightforward.

LEMMA 1. Let Fp denote the class of all nonsingular matrices. Then for any

A¢ F_and Be F_,
-~ P ~ p

tr(AB) - log[B[z_loglAl + p, (1.10)

equality holding iff B = AT,

LEMMA 2. Suppose A> 0 and B> C, where A, B, C and the null matrix O are square

matrices of the same order. Then,

tr AB> tr AC, (1.11)

~

LEMMA 3. For any positive definite matrix A,

tr A - log[A[ -p>0,

with equality iff A = Ip.

2. ESTIMATION OF £ AND Z—l. Consider a multivariate normal linear model in its
canonical form. Suppose § = (§l,...,§k) is a pxk matrix with independent columns
§i-NP(§i,§), and let § be a p~dimensional Wishart matrix with degrees of freedom n
and parameter I distributed independently of X. We assume n> p+l and Ei's unknown.
Consider first estimation of I under the loss (1.5). As pointed out by Shorrock

and Zidek (1976), the above problem remains invariant under the full affine group

G acting on the space of pxk matrices (writing £ = (51.---,€k))

X >AX + B, £+ AL+B, S>ASAY, I-AIAT, (2.1)

~ -~ ~ o




L e . e A T o T oot 2ous 2owt alats atdh st e un autd SR S AU ARMMAAE AN AP

where A is any nonsingular pxp matrix, and B is any pxk matrix. Then, any affine

equivariant estimator of I must be of the form
p(S) = cs, (2.2)

where ¢ is a constant, Noting that E(S) = n , it follows that under the loss (1.5),
the optimal choice of ¢ minimizing the risk of cS under the loss (1.5) is c-ln-l.

Following Sinha (1976), write § = WWT and U = w-lx, where W is a pxp non-

- ~

singular matrix. In order to improve on the best affine equivariant estimator

n—IS, consider the class C of estimators of I having the form £ = ¢(W,U) = Wwa,

~ o -~

where y = w(UUT) is a pxp nonsingular matrix. This class C contains estimators

equivariant under a nonnormal subgroup H of G obtained from G by putting B=0,

- T
The special choice = ¢y. = n le leads to the corresponding estimator ¢O==w¢0w =

0

n S of I. In order to compute the risk R¢ of ¢ under the loss (1.5), first let
o - T
X, = AX, W, = AW, where A is a pxp nonsingular matrix such that AIA™ = Ip’ Ip de-

-1 -1
noting the identity matrix of order p. Note that U=W "X = W §*. Then, writing

~

Eg g as the expectation under Np(Ei,Z) for XiiF i,...,p and Wp(n,z) for S,

afnd~ £,=Af, one gets
- - T -1
R, = E, 2[:r(xfnprz Ly toglww ™| - pl

) , —— .~
M

~

I [tr(ﬁiw*w) - log|W£W*|- 1og|?|- pl. (2.3)

E
§*’-p
Note that for comparing the risk performance of members within the class

T .
Cay = wwa (under é,g) = Y*TY* (under g*,Ig,it suffices to consider

-

R =E . (er(Wiw,v)- loglul)
‘b Q*'Ip ~ o ~

= E[cr{w;l(s*,lj)g;} - loglujll, (2.4)
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Remark 1. The estimator ¢ defined in (2.6) is a multivariate generalization of
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where w:l(i*,u) = EE I (wa*|U= u), and E denotes expectation over the marginal
-~ -~ -~ *? -~ -~ -~

distribution of U.

To minimize R¢ with respect to ¢, it suffices to minimize

-

er{v (e, ) ¥} - log|v] (2.5)

with respect to y for every u. Using Lemma 1 with A= w;l(é*,u) and B=y, it follows
that the expression in (2.5) is minimized when y=y (£, ,u). However, this expression

involves not only u but £, also. We find next an upper bound for w*(E*,u) free
from €.
LEMOA 6. 9, (5,00 <YW = () (T pun)
The proof of this lemma is deferred to the Appendix. Based on E(u), a testimator
is now constructed as follows.

Let ¢= Wwa = (n+k)_l(S+XXT). For estimating I, define the testimator

~ - e

§= 0 1f 8 < o
= ¢O otherwise. (2.6)
The corresponding y say @ is given by
VEv Ity <y
= wo otherwise. (2.7)

Stein's (1964) univariate testimator. The condition ¢§_¢0 can be alternately ex-

pressed as XXTj_(k/n)S <=> sup(RTxxTz)/(lTSQ) < k/n <=> largest eigenvalue of
- - 240 e s

XTS-lX§_k/n. Thus, the estimator proposed in (2.6) is based on Roy's maximum root

~ o~
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test. The test reduces for k=1 to Hotelling's T2 test,

-~

Remark 2. The condition y 2 Yo can be alternately expressed as UUTf_k/n <=> | U] <k/n

where denotes the Euclidean norm.

The following theorem shows the dominance of the testimator 5 over ¢0.

THEOREM 1., Under the loss (1.5),

R. <R for all £ and I.
%0 ~ -

te

Proof: Using (2.3), (2.4) and (2.7),

. 4]
= E - - —~]I .~ .
[tr(?* (? Vo) )= log P |] [y<v, ] (2.8)
20 -
-1 _ c-1 ~ -1 -1
From Lemma 4, Y, 2V . Now, using Lemma 2 with A= wo- Y, B= w* and C=y
one gets from (2.8),
R. - R ey ey - v + 1 i I
~ = < =kltry "y -y og —IJL .~
5 %o -0 vl o]
z =1 -1 -
= Elerlygy T)- loglygy |- pll |
< 0, (2.9)

where in the last step of (2.9), one uses Lemma 3. The proof of Theorem 1 is

complete from (2.8) and (2.9).

Remark 3. Quite generally, given any estimator ¢ = WwWT, defining o = ¢ if b < 9,

= % otherwise, where ¢ = WwWT and ¢ is defined in Lemma 4, one gets R.< R for all

- 3 9
£ and I (vide Sinha (1976)). This enables one to develop sequential testimators

as in Sinha (1976).




O W W W W N v Iw [ wrwees

I i o - e YA G Ao e S mest dea mon o sae g e aren o - —— rr———y

Next we consider the loss given in (1.6). In this case, the best multiple

of S (minimizing the risk) is given by (n—p—l)-l, Let ¢00(S) = (n-p—l)_lS,

~

= WwOOWT so that wOO = (u-p-l)—l Once again, we consider a competing class

I
CO of estimators of the form ¢(S) = Ww(UUT)WT. Proceeding as in (2.3), under the

~~ e

loss (1.6), the risk of ¢ is given by

T -1 - T, « -
R, = Eg*,I [er{(WW, ) 1? 1}—10§G~J*‘:1*) ' - 1og [ Y- el

Hence, for comparing estimators of the given type ¢, it suffices to consider

-~

R [er Wlw, Y1 - 10glv™h] ). (2.10)

=E
9 %*’Ep
Using Lemma 1 once again, it follows that the optimal choice of y is EE I
-~ *’
= wl(E*,u) (say). Similar to Lemma 4, we now prove the following lemma.

CCA AT
RACCRIR

LEMMA 5. wl(g*,u)i(n-p-1+k)‘1up+uuT) = 4w (say).

The proof of Lemma 5 is also deferred to the appendix. Let ¢O(S)==Ww0(u)WT.

Similar to the previous situation, we define the testimator

20(8) = $5(8) £ 94(S) < 944 (8)

= ¢_.(S) otherwise. (2.11)
200"
Accordingly, the y value corresponding to 50 will be given by
oW = 4w 1E yp(u) < v (W)
= y_ (u) otherwise. (2.12)
.00,
Remark 4, Note that $0(S) = (n-p-l+k)-1(S+XXT). Hence, the condition ¢0(S)§_¢00(S)

can be equivalently expressed as largest eigenvalue of X'S—lX§_k/(n-p—l). Thus,

in this case also, the preliminary test is based on Roy's maximum root test.

P LA - a7 - . - - - 'A. .4‘ '-. ~.. '-. '.n '-. - . ° - - * - . - - "’ " . el .
- . . . s e e w e e - - - . - - - - - - . - - - T PRREY T t. “a e = * - AR TR
N L AP S 2P SR PPN ISP I 3P SIS S PRSP WP L UL EP U U Rt Ca e et anas gt P e e e e e T ata e e e
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We now prove the following theorem.

THEQOREM 2. Under the loss (1.6), R. < R .
p ]
¢0 Y00
Proof: Write
R. -R =R -R
3 ® 3. Y00 )
-0 00 0 -1
) ) L oo |
= T - _— -~ 2.1
Eltr{y, (£,,U) (5 -4gq) }= log —7 Iy <u] (2.13)
Yoo -0-= 200

In view of Lemma 5, putting A = w-l -w-l, B =y, and C = ¢_(£,,U) in Lemma 2 one
~ <0 200 20 DS R

-~

gets

rhs of (2.13)

UL R | oSS TR
< Bler(yg (g™ = vgq) * 108l bg¥gq 1T TRINY
RS | - 1 -0~
= ~Eler(ygigg) = Toelvghgel - PIT -
(¥o<¥go!
< 0, T (2.14)

where in the last step of (2.14), one uses Lemma 3. The proof of the theorem is
complete from (2.13) and (2.14).
Remark 5. Here again, as explained in Remark 3, one can develop sequential testima-
tors each dominating the best equivariant estimator ¢00(§).

We consider now the simultaneous estimation of the mean vector and the variance-
covariance matrix under entropy loss. Writing fu,Z(Yl""’zn) as the joint pdf of n

iid Np(u,X) variables, it follows that taking the loss L((u,Z), (%,A)) as the entropy

~ -~ ~ -~

- o~

distance between the Np(u,z) and Np(R,A) distributions, and assuming n> p+l for

purposes of estimation, one gets
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fu,X(Y )

1P
L[(B:E),(Esé)] = Eu’z[lc,g £ A(Y ,.,.,Yn)

~

]

. n
- £ _[log(|z]/|AD 2. 2tex(z s ) + @ TN E-w )
Uy R - LA

+ %_-{tr(A-lso) +n(¥- z)Tz'l(?- 2)}1

(where Y = n Xi 174> 0 = Ezgl(Yi-§)(Yi-§)T)

toglza™| - 5P -4

Nis

+3 er(zA™) + Slp+a(e-u) T ()]

B Fr ) + erah)- log|za™l| - pl. (2.15)

Thus if one uses the best location and scale invariant estimators Y and (n-p-l).lS0
for u and I respectively, in view of the loss (2.13), it suffices to improve on Y

and (n-p-l)-ls

-~

0 separately. From James and Stein (1961), it follows that under the

loss
-1
Ly (2w = (2= 27w,

Y is improved by the estimator &.(¥,S.) = (1 )Y, provided p> 2.
- 0°.’.0 =T =13
~ nY S0 Y

Again the loss

L,(5,A) = tr(1a™")- log|za™| - p
is the same as the loss (1.6), and taking k=1 in Theorem 2, it follows that
(n-p41)-ls is dominated by the testimator

<0

= -1 ==T -1 ==T -1
§1(¥’§o) = (n-p) (Spta¥Y¥™)  if (n=p) “(Sytn¥Y") < (n-p-1) S,

= (n-p-l)-ls0 otherwise,
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Thus, under the loss (2.193), (?,So) is dominated by (60,61) for 1> 2, For p<2,
(?,SO) is of course dominated by (?,61). Finally, for p> 2, sequential testimators
each dominating C?,So) for the loss (2.15) can be easily obtained ( vide Sinha (1976)).

Next we consider estimation of the precision matrix Z-l under the losses (1.5)

-~

and (1.6) (calling Ll(E,Z) and LZ(Z,Z) as Ll(z'l,z'l) and LZ(X-l,Z—l) respectively).

Consider the class of estimators of the form ¢ = (WMJT)-l for Z-l so that, under L

-1

1’
the choice ¢ = n-llp leads to the best multiple (of Sul) estimator nS-l of L

-~

Recalling that ¢(S) = (n+k)-1(S+XXT), it follows that defining ¢ as in (2.6), the

best equivariant estimator nS_1 = ¢61(S) is dominated by $-1(S). Similarly, under

the loss LZ’ the best equivariant estimator (n-p—l)S-1 = ¢53(S) of Z-l is dominated

~

by 561(8) defined in (2.11). Again, in each case sequential testimators are easily

-~

obtained.

3. ESTIMATION OF |Z|. Consider the same set up as of Section 2. Estimating [I|

by a, assume the loss to be given by
L (a,|z]) = =& - log = - 1, (3.1)

Following Shorrock and Zidek (1976) and Sinha (1976), it follows that the best equi-

variant estimator of |Z| is colsl where o is determined from minimizing EZ. I
) ~ ~P

(c|s] - logc) with respect to c. This gives

o = (EZ- I |S|)-l = (n-p)!/n! .

-~ ~

Following Stein's suggestion, and arguments as in Shorrock and Zidek (1976)

or Sinha (1976), we look for better estimators in the class ¢(X,S)= w(XTS_lX)ISI




for some real valued function ¢. Under the loss (3.1), ¢ has the risk

R, =E wxs1x) Is] - 1og¢(sz'lX)— log |S|- 1], (3.2)

2*7p

T.-1

where E_ 1s defined as in Section 2. Write V = X S "X so that given V = v, the

-~

best choice of ¢y (minimizing (3.2)) is given by y(v)= wg (v) = {EE
-~ *~

Following the line of argument of Sinha (1976), one can easily show that

W < [Ltv] (n-pt) 1/ (et ! = Yo (v)  (say). (3.3
W= I v

Ve

-~

Then, it is easy to show using (3.3) and strict convexity of the loss (3.1) that

for every y defining ;(v) = min(¥(v),9,(M), &(XTS—lx)ISI dominates w(XTS_lX)|S|

(n-p+k) !
(n+k)!

dominates {(n-p)!/n!}|S| under the loss (3.1). Note that Z is indeed a testimator

. - 1
under the loss (3.1). In particular, the estimator Z==min{(nd?)'|8|,

since the ratio |s+xxT|/|s| - |1k+sz‘lx| is a MANOVA test statistic for Hy: £=0

against H,: £%0,

-~ -~

For the other loss Lz(a,IZI) defined by
2] 15|
LZ(‘a’IEI) == log - 1 (3.4)
it follows that the best equivariant estimator of IXlis c|S| where c minimizes

l = —1 = - ] t
EZ=IPCET§T + logc). This gives ¢ EZ=Ip{|§| } = (n-p-2)'/(n-2)"!

As before, we look for a better estimator in the class ¢(X,S) = w(XTS-lx)!SI

for some real valued functiom y. Such a ¢, under the loss (3.4), has the risk

R, = B (1/wXs™I0) [s]) + logu(X's™ix) + log|s| - 1] (3.5)
*, -~ ~ ~ ~ o~ ~ -~

-~ ~

which is minimized for a given V= v by choosing y(v) = wg (v) = Eg 1
-~ - - *'- *’
2 2%'p
Following Sinha (1976), we can easily show that

ve (V)< |1 +v| (a-p-2+k) !/ (n-2+k) ! = ¥, (v) (say). (3.6)
* = ~

(15| v=v}.

-1
(Is|{v=v)} .
*’Ep l~||~ Y)

|s+xxT| }
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Then, for every ¢ defining y(v) = min(y(v), wo(v)), it follows that w(XTS-lX)|SI

dominates w(xTS-lX)ISI under the loss (3.4). In particular, the testimator

-p=2)" ~-p= ! T '
Z= min{gz_g)?) |§|, g:_§+§;?) |§“§§ |} dominates {(n=p=2)!/(n-2)" |§I under L

2
loss.

As in Sinha (1976), it is possible to easily derive sequential testimators of |I]|

under both the losses, Details are omitted.
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APPENDIX

Proof of Lemma 4. Since, Ip+-uuT is positive definite, there exists a nonsingular Q

~ o~

such that QQ = Ip+-uuT. Write W, = W,_Q. Then the inequality w*(i*,u)< w(u) <=>
o~ -~ - ~T- -1 -1

-1 - T
Yy (5*,9)3_? (E) can be alternately expressed as 9T Eg*,I W s **lu)Q > (n+k)Q 91'
Hence, it suffices to show that -
B (w** anlW 2 (atk) I for all u,¢,. (A.1)
Note that (A.l) can be alternately expressed as
B I (f Y** kW) > (n+k)z 2 (A.2)
N %

for all 2(# 0), u and £, From (2.19) of Sinha (1976), it follows that a sufficient

condition for (A.2) to hold is that

n—2+k
f o 1] 2 i tvnenpl- 3wt - 2,50 10w
weEp
~ n~p+k

-~

> f 2 lwal 2 exp[~ Zwa® - 2wu £9) ldw
P 2" < RIRDTL
weE

>(n+k) 272 (4.3)

-~ o~

for all l# 0, u@‘Q-lu and E*. In (A.3) and in what follows, we use the notation
w for W, (and accordingly W for W**)

Use now the transformation Z WL , where LT 1s an orthogonal matrix with its

first column vector equal to 2/(2 2)1/2. We write Z = (Zl""’zp)' Then (A.3)

can be alternately expressed as

( T n-2+k T 1 T T

| alzl T zpenele per(aa-2au g ) 1de
z

n-p+k
o I |zz | 2 exp(- —tr(zz - 2zu €, )]dz

~ ~

> n+k, where u = Lu,. (A.4)

~ ~ o~
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Next, as in Sinha (1976), let Ap = Ip and

-1
T T
ZTSLIVS R ML Zin
A - I - (Z -ooz ) .
-1 <P <1+l -P T T N
z Z [ L] [ ] z Z e
<p~i+1 op<p ?p

i=1,...,p-1.

Then, following (2,20)-(2.21) of Sinha (1976) and noting that his w's are our z's,

we can express the left hand side of (A.4), in Sinha's (1976) notation, as

- n-2+k n-p+k
E[(WoW )n 2 WA w2 wlawy 2T
1o Wo-18p-1¥po1) < - (W AW, 1

n—-p+k n=p+k n-p+k

s E((wiwp) 2w oA w0y A wrawy 2

Wo-12p-1"p-1 1AM ] (4.5)

T

. iable .
(141)*°° ,W(p), Y éi?i is a noncentral chisquared varia with 1.d.f
where (n T

2 - ! =
and noncentrality parameter A(i) P(i)éi?(i) -(1)""’?(p)) ?Lg*'

Accordingly, using the fact that Wiwlz_WfAlw and proceeding as in Sinha (1976), we

get the expression in (A.5) > 2 (Ezgiﬁo + p = n+k, where in the ultimate step, one

where, given W

uses (2.22) of Sinha with r = (n-p+k)/2. The proof of Lemma 4 is complete.

Proof of Lemma 5. It suffices to show that

AOCA ) |ul<(n-p140 TH (T +uuT (A.6)

~~

for all 2(#0), u and §,. Defining Q as in the proof of Lemma 4, and using calculations

similar to (A.1)-(A.3), we find that (A.6) can be equivalently expressed as

a-ptk
J 2|wa| 2 (lT(wTw)-ll)exp[- %tr(wa-Zwu*gz)dw
p2 =~ < e~ . IOV
YeE n-p+k
3 [ 2|WWI| 2 exp(- %tr(wa—Zwu*sz)]dw
weEP

< (n-p-1+k) "L (2T2) : (4.7
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for all 2(# 0), u, = Q-lu and £,. Next make the transformation ZT = WL where

-~

2=

- ) ) T ) - ;
%/(le)llz. Then, (zzD)™! = @i ™ = L @W'w) 11 so that 2@t /(T s

- o~ o~

,..,Zp) and L is an orthogonal matrix with its first column vector equal to

E the element in the first row and first column of (ZZT)-I. We denote this by (ZZT)Ill.

l Now, writing u, = LTu*, (A.7) can be equivalently expressed as
n-p+k
T, 2 T, -1 1 T,T T
| [ =17 @] el ety g e
' zeEP
n-p+k

i T 2 i, T, T T

I I o R R
; 2¢EP
' -1
i < (n-p-14) . (A.8)
v

With the same Ai's (i=1,...,p) as defined in Lemma 4, it follows that

T T T T T
i |228| = (22 ) (Z2 A 12, 1) (TyA)Z) (218 2)
f and
5 T.-1 _ ., T,~1,T T
| (227 ) = 12271772 2) e (ZyAl)).

Accordingly, writing r = (n-p+k)/2, lhs of (A.8)

T T T T T r-1
ELZpa )" o (Ghy2)" )T

‘ ~p<p-
. T r T r, T r
PE[(ZAZ ) ... (ZpA2,) (2142, )]

: (Zr-l)—l(using conditional argument as in the proof of Lemma 4 and (2.22)
' ) of Sinha (1976))

| A

= (n-p+k-1)"1.

- TEmT

The proof of Lemma 5 is complete.

AR i g}
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